

#### Centro di ricerca Orticoltura e Florovivaismo



### Produzione e impiego di tè di compost per la biostimolazione e difesa in agricoltura

### Massimo Zaccardelli

CREA Centro di ricerca Orticoltura e Florovivaismo, Pontecagnano (SA)

Corso di Agraria-DIFARMA, Università degli Studi di Salerno, Fisciano (SA)





# Gestione dei residui colturali mediante il compostaggio







### **CARBONFARM**









### **POLIECO 2**









# Compostaggio c/o Podere Stuard di Parma



# CTC2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria

#### II TE' DI COMPOST

<u>Preparato organico liquido</u> ottenuto dall'ossigenazione (tè areati) o meno (tè non areati) di compost di qualità, posto in un mezzo liquido (generalmente acqua). L'infusione può durare dalle poche ore sino a una settimana, dopo le quali il preparato è pronto per l'uso.

I tè di compost sono <u>sospensioni acquose ricche di microrganismi utili</u> e <u>molecole organiche ed inorganiche solubili</u> estratte dal compost o sintetizzate *ex novo* durante la produzione, molto bioattivi sulle piante.









# Ottimizzazione della produzione dei tè di compost areati

- Tipo di compost: compost ben maturo
- Rapporto compost/acqua: 1 volume di compost e 4 volumi di acqua
- Grado di areazione: 5' ogni 3 h oppure 15' ogni 6 h
- Temperatura: 28 °C
- Aggiunta di additivi: meglio evitare per ridurre il rischio di sviluppo di microrganismi indesiderati
- Tempo di infusione: 7 giorni

#### II TE' DI COMPOST



#### Dispositivo per la produzione del tè di compost

di 2 mm) e conservati a 4 °C. Allo scopo sono stati utilizzati tre compost da residui verdi di pomodoro e scarola mescolati tra loro, in termini di sostanza secca, in varie combinazioni (C1: 17,5% pomodoro + 15,5% scarola; C2: 37,5% pomodoro + 11% scarola; C3: 50% pomodoro + 50% cippato



Foto A Processo di estrazione del compost-tea: (1) impianto di estrazione simultanea con quattro fermentatori; (2) sacca di tessuto-non-tessuto contenente compost; (3) fase di aerazione; (4) apertura del fermentatore a processo concluso; (5) recupero del compost-tea

#### II TE' DI COMPOST



#### Dispositivo per la produzione del tè di compost

















# CTCa Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria

#### II TE' DI COMPOST

Dispositivo per la produzione del tè di compost



#### II TE' DI COMPOST



### Effetti dei tè di compost:

- 1. Incremento della crescita radicale e della pianta in generale
- 2. Incremento della concentrazione di clorofilla
- 3. Incremento della fioritura e dell'allegagione
- 4. Incremento significatvo della produzione
- 5. Protezione dalle malattie di origine fungina e batterica (sembra anche da nematodi)





#### Valutazione della biostimolazione dei tè di compost

- CT

+ CT







Carta bibula

**Torba** 





#### Valutazione della biostimolazione dei tè di compost





#### Valutazione della biostimolazione dei tè di compost

### Biostimolazione del tè di compost



+ CT

Preparato commerciale a base di amminoacidi

- CI



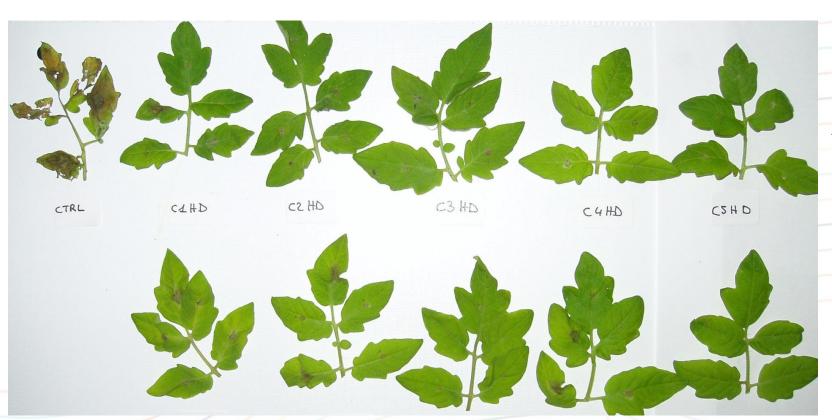
### Biocontrollo del tè di compost:

- CT

+ CT

- CT + CT




Alternaria alternata/Pomodoro

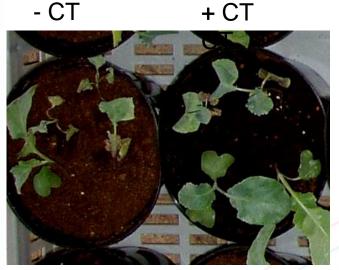


Pyrenochaeta lycopersici/Pomodoro

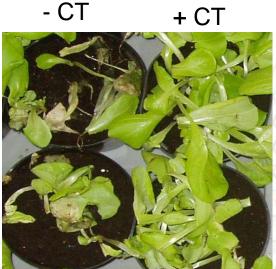


### Biocontrollo del tè di compost:

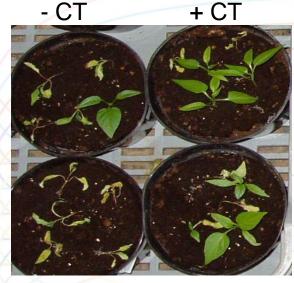



**AcqCTs** 

LatCTs


Botrytis cinerea




### Biocontrollo del tè di compost:



Rhizoctonia solani/Cavolo rapa



Sclerotinia minor/Lattuga




Sclerotium rolfsii/Peperone

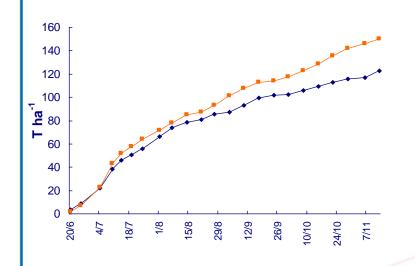


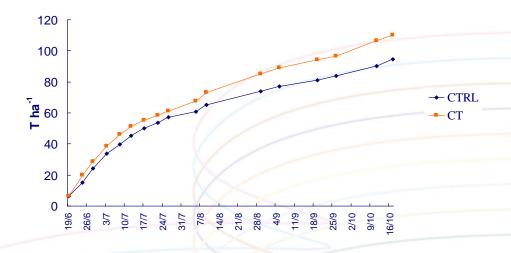
### Biocontrollo del tè di compost:

Sclerotinia minor/Lattuga






- CT


+ CT





#### + 22% di Produzione di PEPERONE











#### +32% di produzione totale su Cavolo-rapa



- CT

+ C7









CTR CT L

+ 46% di incremento di produzione rispetto al CTRL

#### CTRL F CT1 CT2 CT3 CT4







### Prova CT RUCOLA:

CT:

43,91 t/ha

Formulato commerciale a base di microrganismi:

40,88 t/ha

Contenuto di nitrati in rucola da CT prima raccolta:

- 30%



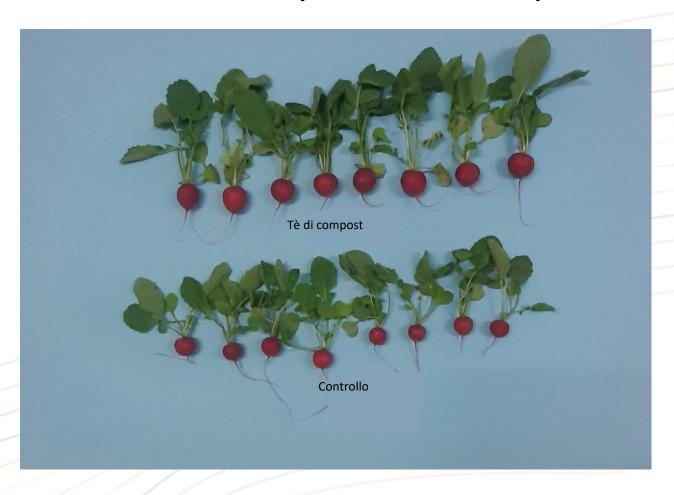


### Prova CT RAVANELLO 2021:

CT: 40,15\* t/ha

Controllo: 32,43 t/ha

|            | рН   | Acidità<br>(%) | Residuo<br>ottico (°Brix) | Residuo<br>secco (%) |
|------------|------|----------------|---------------------------|----------------------|
| CT         | 6,74 | 0,05           | 3,17*                     | 6,07*                |
| Control lo | 6,80 | 0,06           | 2,70                      | 4,36                 |

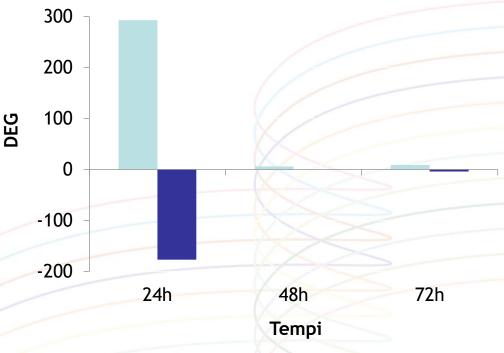



#### Valutazione agronomica

#### dei Tè di compost

### Ravanello raccolta gennaio 2024

+ 41% di incremento di produzione rispetto al CTRL



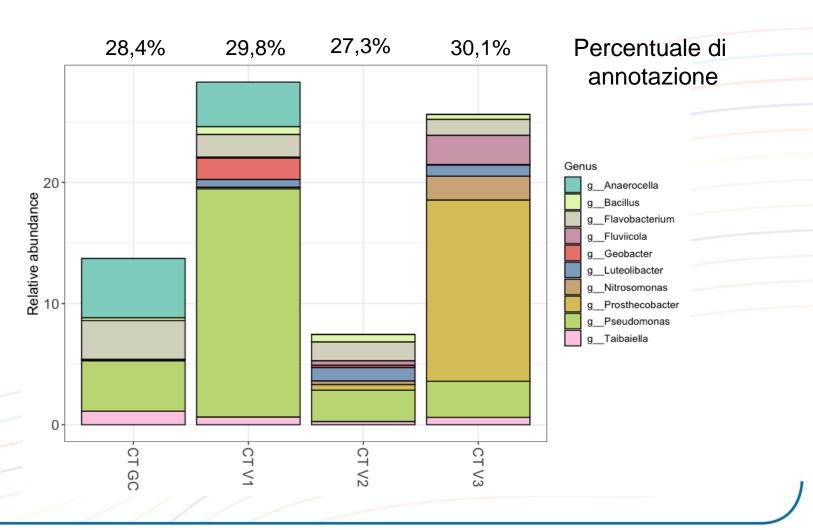



#### II TE' DI COMPOST

#### Analisi trascrittomica di pomodoro trattato con tè di compost








DEG up e down regolati nei tre tempi di prelievo

# CTE a Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria

#### II TE' DI COMPOST

### Metagenomica dei tè di compost





#### Analisi multilivello dei tè di compost

- Analisi microbiologica classica: ricerca, su substrati più o meno selettivi, di gruppi microbici generici (es. batteri totali e funghi totali) e specifici (es. microrganismi produttori di siderofori, microrganismi produttori di sostanze antifungine, microrganismi solubilizzatori del P, actinomiceti, E. coli, ecc.);
- Analisi della biodiversità catabolica funzionale: utilizzo delle piastre Biolog-ecoplate per vedere quali substrati vengono metabolizzati dai microrganismi di un tè di compost;
- Analisi metagenomica: estrazione del DNA dai tè di compost e analisi delle sequenze 16S (batteri) e ITS (funghi) del DNA;
- Analisi colturomica: messa a punto di nuovi substrati per l'isolamento di nuove specie di microrganismi;
- Analisi funzionale: proprietà biostimolanti e di soppressività verso malattie fungine, effetti sulla produttività e difesa delle colture in campo.



### I PGPR

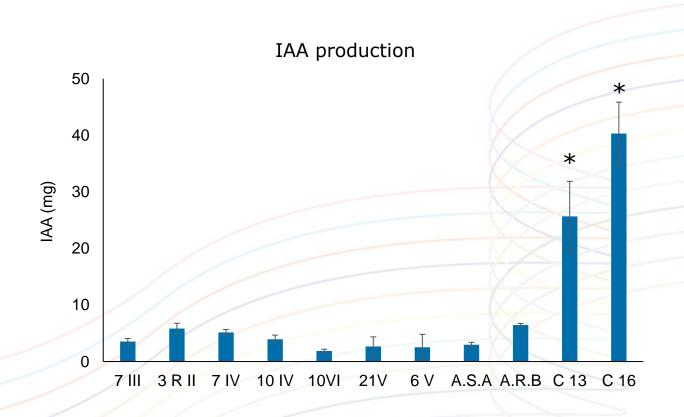




# I PGPR possono produrre fitormoni o degradare l'Etilene

- Sostanze tipo AUXINE

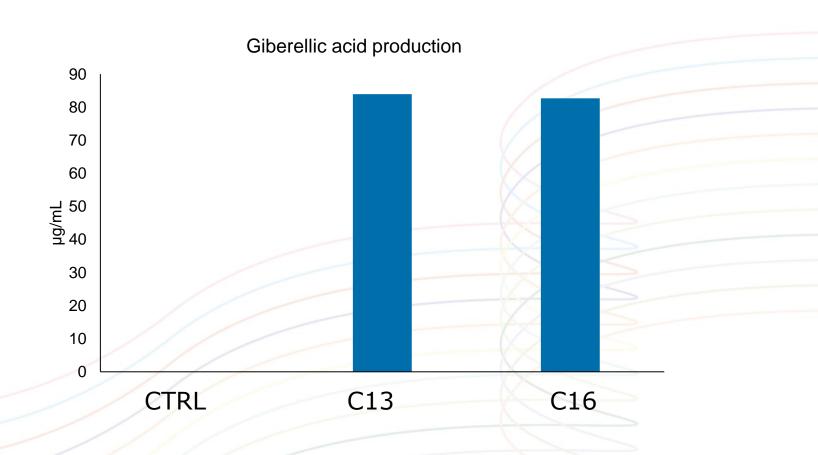
- Sostanze tipo CITOCHININE


- Sostanze tipo GIBBERELLINE





#### Biostimolazione con microrganismi


#### PGPR produttori di fitormoni

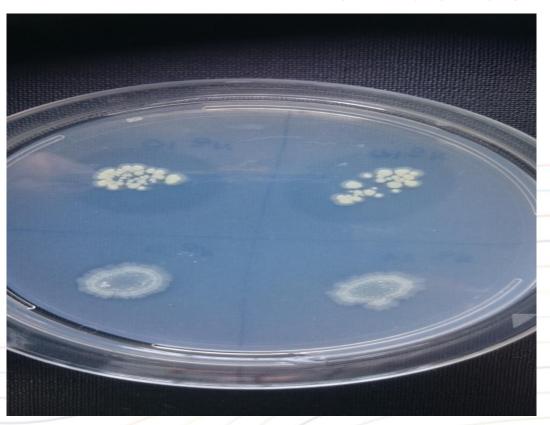




#### Biostimolazione con microrganismi

### PGPR produttori di fitormoni





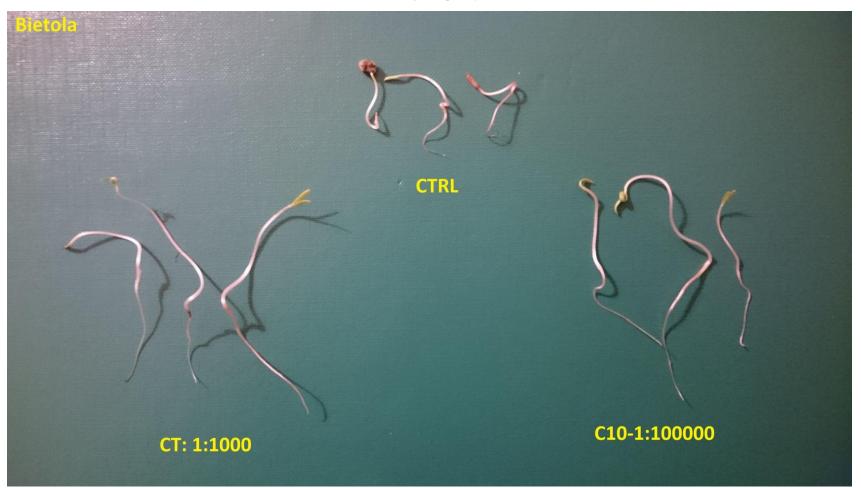



#### Biofertilizzazione con microrganismi

### Microganismi che solubilizzano il P

Es. Bacillus



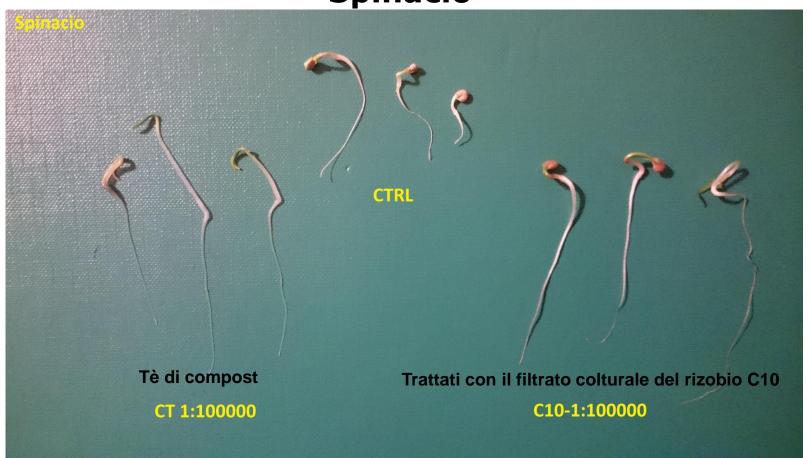

Questi microrganismi sono in grado di solubilizzare il fosforo minerale contenuto nel suolo (es. il fosfato di calcio), rendendolo così disponibile per le piante.





# Stimolazione della crescita dovuta a tè di compost e al ceppo di rizobio C10

#### **Bietola**

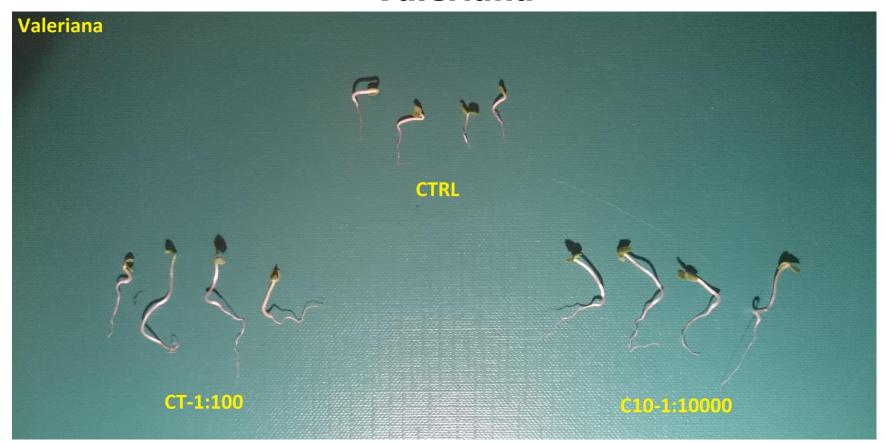







## Stimolazione della crescita dovuta a tè di compost e al ceppo di rizobio C10

**Spinacio** 

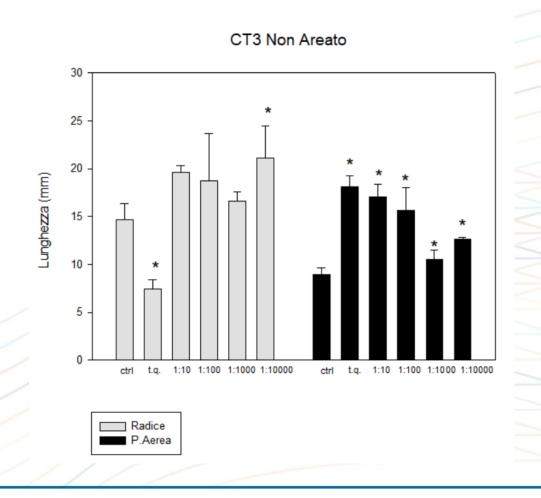







# Stimolazione della crescita dovuta a tè di compost e al ceppo di rizobio C10

#### **Valeriana**








# Elevatissima biostimolazione di particolari tè di compost

## Biostimolazione di rucola con CT ottenuto da compost con residui di foglie e malli di noce







### Impiego di tè di compost in vivaio





Article

#### Enhancing Sustainability of Tomato, Pepper and Melon Nursery Production Systems by Using Compost Tea Spray Applications

Domenica Villecco <sup>1</sup>, Catello Pane <sup>1</sup>, Domenico Ronga <sup>2,†</sup> and Massimo Zaccardelli <sup>1,\*</sup>

- Consiglio per la Ricerca in Agricoltura e L'analisi dell'Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy; domygocciola@live.it (D.V.); catello.pane@crea.gov.it (C.P.)
- Dipartimento di Scienze della Vita, Università degli Studi di Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; domenico.ronga@unimore.it
- \* Correspondence: massimo.zaccardelli@crea.gov.it; Tel.: +39-089-386219
- † Present address: Centro Ricerche Produzioni Animali—CRPA S.p.A., Viale Timavo, n. 43/2, 42121 Reggio Emilia, Italy.

Received: 21 July 2020; Accepted: 3 September 2020; Published: 5 September 2020





### Tè di vermicompost

 vermicompost prodotto in Campania dalla parte solida del digestato proveniente da impianto di biogas alimentato da letame bufalino

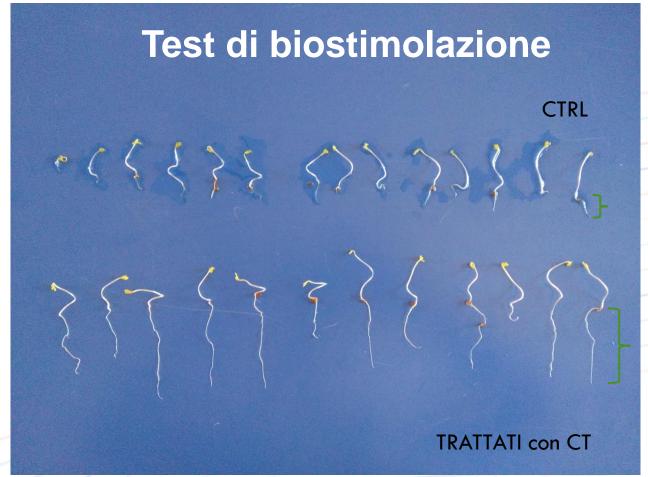




□ vermicompost prodotto nel Lazio ottenuto da letame

 $\rightarrow$  CT2

□ compost commerciale ottenuto da residui vegetali

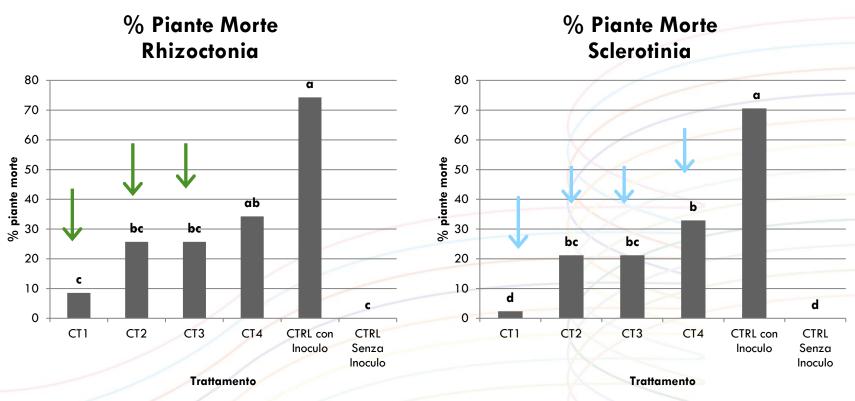

**→** CT3

□ vermicompost da digestato da un impianto di biogas alimentato da letame vaccino che si trova in Piemonte





### Tè di vermicompost




Il tè ottenuto dal vermicompost prodotto nel Lazio da letame è quello che ha biostimolato di più (CT2)



### Tè di vermicompost

#### Test di biostimolazione



Il tè ottenuto da vermicompost prodotto dal digestato di un impianto di biogas in Piemonte alimentato con letame di vaccino, è quello risultato più soppressivo (CT4)





### Estratti acquosi di vermicompost









#### CONCLUSIONI

Il tè di compost è un ottimo sistema per valorizzare compost, favorire l'economia circolare e incrementare i crediti di carbonio, sia nell'agricoltura da pieno campo che in quella protetta, sia nel settore vivaistico.



# Grazie per l'attenzione



CREA Pontecagnano (SA)

massimo.zaccardelli@crea.gov.it



UNISA Fisciano (SA)

mzaccardelli@unisa.it

Gruppo WhatsApp AUTO-MICRO-AGRI